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Adducts of Tröger bases and activated acetylenes:
synthesis and structureI
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Abstract—It was found by X-ray diffraction and NMR studies that the structure of the adduct of bis-ortho-methyl-bis-para-methyl
substituted Tröger base and dimethyl acetylenedicarboxylate is a [3.3.1]bicyclic compound corresponding to the methyl 13-[1-(meth-
oxycarbonyl)vinyl]-13-carboxylate. Chemical and NMR evidence supported similar structures for all other reported adducts of Trö-
ger bases and activated acetylenes.
� 2007 Elsevier Ltd. All rights reserved.
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Tröger bases (TBs) 1 are inherently chiral heterocycles
with a saturated bicyclic core (highlighted).2 The chem-
ical properties of TBs can be divided into the reactions
of the saturated core and those of the aromatic moieties.
Aromatic reactions are non-specific and include, for
example, Pd-catalyzed cross-coupling.3 Reactions of
the bicyclic core include racemization4 and diastereo-
merization5 in the presence of acids, N-mono- and dial-
kylation,6 benzylic C-lithiation in the presence of BF3

and then C-alkylation,7 and reactions with loss of the
methano-bridge. Thus, TBs can be di-N-acylated, di-
N-nitrosylated8 or converted into ethano-TBs9 with loss
of formaldehyde.
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It has been reported recently that the parent TB 2
(R1 = H, R2 = Me)10 reacts with activated acetylenes
in the presence of ZnBr2 in MeCN to give [3.3.3]bicylic
products 3 (Scheme 1).11 We were eager to study this
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Scheme 2.

Figure 1. Projection of the X-ray crystal structure of compound 4

(R1 = R2 = R = Me, R3 = CO2Me).
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reaction with bis-ortho-methyl substituted TBs 2
(R1 = Me) in order to investigate the effect of substitu-
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Scheme 3.
ents. We found that bis-ortho-substitution makes TBs
practically inert to racemization in acidic media.4f–h Fur-
thermore, it has been shown recently that an analogous
effect of bis-ortho-substitution is observed for diastereo-
merization of TBs.5d

The reaction of TB 2 (R1 = R2 = Me) with dimethyl
acetylenedicarboxylate in the presence of BF3ÆEt2O gave
a product, to which we assigned the structure as methyl
13-[1-(methoxycarbonyl)vinyl]-13-carboxylate 4 (R1 =
R2 = R = Me, R3 = CO2Me) (Scheme 2).12 The assign-
ment of structure 4 was based on 1H NMR12 and
X-ray diffraction data13 (Fig. 1).

The isomeric structures 4 and 3 contradict each other.
We turned our attention to the original publication on
the synthesis of compounds 3 to analyze if the reactivity
of TB 2 (R1 = R2 = Me) had been affected by the differ-
ent substitution or the use of different Lewis acid and
whether structure 3 was correct. We looked at the chem-
ical shifts of the protons Ha and Hb (Schemes 1 and 2).
In compound 4 (R1 = R2 = R = Me, R3 = CO2Me) and
compound 3 these protons are in the region of 6 ppm,
which is appropriate for protons of unsaturated bonds
but very unusual for allylic protons. Moreover, the
expected geminal HaHb-coupling constants for 3 were
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Scheme 4. The proposed mechanism of formation of the adducts of TBs and activated acetylenes (only saturated regions of the molecules are
shown).
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absent, whereas in 4 (R1 = R2 = R = Me, R3 = CO2Me)
2J = 0.9 Hz, which is typical for methylene double bond
protons, but unprecedented for protons at an sp3-car-
bon. Therefore, we conclude that the [3.3.3]bicyclic
structure 3 is incorrect and should be substituted by
the [3.3.1]bicyclic structure 4. The chemical reactivity
of the adduct between methyl propiolate and TB 2
(R1 = H, R2 = Me) (5, Scheme 3), studied by the same
authors,11 supported our conclusion. Thus, compound
5 was hydrogenated to give the diastereomeric mixture
6 (Scheme 3).

The mechanism for the formation of products 4 may in-
volve an allylic rearrangement promoted by the Lewis
acid (Scheme 4).
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